検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

A Lagrangian construction of rotating star models

小形 美沙*; 大川 博督*; 藤澤 幸太郎*; 安武 伸俊; 山本 裕*; 山田 章一*

Monthly Notices of the Royal Astronomical Society, 521(2), p.2561 - 2576, 2023/05

 被引用回数:0 パーセンタイル:0(Astronomy & Astrophysics)

We present a new formulation for numerically obtaining axisymmetric equilibrium structures of rotating stars in two spatial dimensions. With a view to apply it to the secular evolution of rotating stars, we base it on the Lagrangian description, i.e. we solve the force-balance equations to find the spatial positions of fluid elements endowed individually with a mass, specific entropy and angular momentum. The system of non-linear equations obtained by finite-differencing the basic equations is solved with the W4 method, which is a new multidimensional root-finding scheme of our own devising. We augment it with a remapping scheme to avoid distortions of the Lagrangian coordinates. In this first one of a series of papers, we will give a detailed description of these methods initially. We then present the results of some test calculations, which include the construction of both rapidly rotating barotropic and baroclinic equilibrium states. We gauge their accuracies quantitatively with some diagnostic quantities as well as via comparisons with the counterparts obtained with an Eulerian code. For a demonstrative purpose, we apply the code to a toy-model cooling calculation of a rotating white dwarf.

論文

A Novel Lagrangian formulation to construct relativistic rotating stars; Towards its application to their evolution calculations

大川 博督*; 藤澤 幸太郎*; 安武 伸俊; 小形 美沙*; 山本 裕*; 山田 章一*

Monthly Notices of the Royal Astronomical Society, 520(1), p.24 - 43, 2023/03

 被引用回数:1 パーセンタイル:44.78(Astronomy & Astrophysics)

We present a new formulation to construct numerically equilibrium configurations of rotating stars in general relativity. Having in mind the application to their quasi-static evolutions on a secular time-scale, we adopt a Lagrangian formulation of our own devising, in which we solve force-balance equations to seek for the positions of fluid elements corresponding to the grid points, instead of the ordinary Eulerian formulation. Unlike previous works in the literature, we do not employ the first integral of the Euler equation, which is not obtained analytically in general. We assign a mass, specific angular momentum and entropy to each fluid element in contrast to the previous Eulerian methods, in which the spatial distribution of the angular velocity or angular momentum is specified. These distributions are determined after the positions of all fluid elements (or grid points) are derived in our formulation. We solve the large system of algebraic non-linear equations that are obtained by discretizing the time-independent Euler and Einstein equations in the finite-element method by using our new multidimensional root-finding scheme, named the W4 method. To demonstrate the capability of our new formulation, we construct some rotational configurations, both barotropic and baroclinic. As toy models, we also solve three evolutionary sequences that mimic the cooling, mass-loss, and mass-accretion.

2 件中 1件目~2件目を表示
  • 1